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We study nonequipartition of energy in granular fluids composed by an arbitrarily large number of compo-
nents. We focus on a simple mean field model, based upon a Maxwell collision operator kernel, and predict the
temperature ratios for the species. Moreover, we perform direct Monte Carlo simulations in order to verify the
predictions.
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I. INTRODUCTION

The equipartition principle states that the total energy of
an equilibrium macroscopic system is equally distributed
among the degrees of freedom of its components. For in-
stance, in a classical gas mixture, equilibrium statistical me-
chanics show that equipartition of energy between the com-
ponents is overwhelmingly more probable than a state
characterized by different energies, i.e., the entropy of the
system reaches its maximum at the equipartition state �1�.
This result ensures the occurrence of energy equipartition at
the thermodynamic limit, and allows one to deduce a micro-
scopic expression and interpretation for the thermodynamic
temperature; namely, temperature can be defined kinetically
as TE= �1/Nd��kin�E, where Nd is the number of degrees of
freedom in the system, and �kin�E is an equilibrium average
of the kinetic energy. This preliminary discussion shows the
central role played by equipartition of energy in the founda-
tions of equilibrium statistical mechanics, and its deep links
with fundamental equilibrium concepts such as energy bath
or thermal equilibrium.

However, the above kinetic definition may also be applied
in nonequilibrium situations, TNE= �1/Nd��kin�NE. This ki-
netic temperature, which is now defined as an average with a
nonequilibrium distribution in phase space, is a less funda-
mental quantity than the equilibrium temperature, and is
equivalent to the average agitation of the particles in the
system. By construction, it does not highlight a priori equi-
librium features like the equipartition principle. Nonetheless,
its inclusion in systems where thermodynamics are ill de-
fined may be relevant practically, as this quantity still pro-
vides meaningful information about the variance of the ve-
locity distribution and about the local average energy in the
system. This approach has been applied during the last years
to describe granular fluids, i.e., systems composed of a large
number of agitated grains interacting inelastically. The
granular temperature is then defined kinetically by T�r , t�
= ��1/d��mV2 /2��, where V=v−u�r , t� is the random veloc-
ity, u�r , t� is the local mean velocity, and d is the dimension
of the system. The average is now performed with the one-

particle velocity distribution f�r ,v ; t�. This quantity has been
shown to give a relevant description of granular fluids, for
instance by paving the way to an hydrodynamic formalism.
In contrast, however, the granular temperature exhibits non-
equilibrium features, such as an anomalous Fourier law for
the energy flux �2�, and nonequipartition of energy in granu-
lar mixtures. This nonequipartition phenomenon has been
first theoretically predicted in the case of binary mixtures by
�3�, and successfully verified by numerical simulations �4�
and experiments �5�. It has also been observed in the case of
rough inelastic spheres, where the translational temperature
and the rotational temperature are different. It is important to
note here that energy nonequipartition deserves a careful
study due to macroscopic consequences such as non-
negligible corrections to the transport coefficients �6�, and its
role in vertical segregation �7�.

In this Brief Report, we introduce a coherent mean field
model for low density granular fluids composed by an arbi-
trary large number of components. This model rests on a
detailed analysis for the collision frequencies of the different
components, and generalizes Maxwell-like models intro-
duced by Ben-Naim �11� and Marconi �12�. The values for
energy nonequipartition are derived analytically in the low
inelasticity limit, and are successfully compared with inelas-
tic hard sphere theory and computer simulations.

II. TWO RATE MAXWELL MODEL

In this paper, we consider a binary system composed by
smooth inelastic hard spheres �IHSs� in d dimensions, i.e.,
the interactions are instantaneous when the spheres are in
contact and there is no transfer of angular momentum. More-
over, we focus on a system that is and remains spatially
homogeneous in order to focus on the homogeneous cooling
state. There are K kinds of grains, which are characterized by
the following mechanical quantities: their respective mass mi
and diameter �i as well as their mutual inelasticity coeffi-
cients �ij that describe the energy dissipation during a colli-
sion between particles i and j. These different properties dis-
criminate the components, which are described at the
macroscopic level by their concentration xi=Ni /N and partial
temperature Ti���1/d��miV

2 /2��i, where the average is per-
formed over species i. By definition, these macroscopic
quantities are constrained by the relations �i=1

K xi=1 and
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�i=1
K xiTi=T. Conservation of impulsion implies the following

collision rule:

vi
* = vi −

mj

�mi + mj�
�1 + �ij���� · vij� ,

v j
* = v j +

mi

�mi + mj�
�1 + �ij���� · vij� , �1�

where vij and rij are, respectively, the relative velocities vij
=vi−v j and positions rij =ri−r j of the colliding disks i and j.
The velocities with asterisks are their postcollisional veloci-
ties and � is the unitary vector along the axis joining the
centers of the two colliding spheres. In the low density limit,
by assuming that precollisional correlations may be ne-
glected �8�, the system is described by a system of K coupled
Boltzmann equations. In this paper, we use mean field meth-
ods in order to simplify the mathematical structure of the
collision operator, by assuming that the collision frequency
between particles i and j, i.e., proportional to vij in the case
of hard spheres, is approximated by the mean field quantity
�ij = �1/	2�	Ti /mi+Tj /mj. Let us stress that this kind of as-
sumption is common in order to build inelastic Maxwell
models �9,10,12�. In the case of binary mixtures, a simplified
form has been introduced by Ben-Naim and Krapivsky �10�,
�ij = �1/	2�	Ti�t�+Tj�t�, but it does not describe correctly the
mass dependence of the collision frequencies and does not
give correct relations in the case of mass-dispersed mixtures.
The above assumption leads to a system of K kinetic equa-
tions for the velocity distributions f i:

� f i�v�
�t

= xi�i
d−1	 Ti

mi
Kii�f i, f i�

+ �
j=1,j�i

K
xj

	2
�ij

d−1	 Ti

mi
+

Tj

mj
Kij�f i, f j� �2�

where angular integrations have been absorbed into the time
scale. We call this model the two-rate Maxwell model
�TRMM�. The integer i goes from 1 to K, and Kij is defined
by

Kij�f�v�,g�w�� =
 d� dw
1

�ij
�f�v��g�w�� − f�v�g�w�� .

�3�

Because of the Maxwell-like structure of the collision opera-
tors, this set equation leads to a closed system of equations
for the partial temperatures Ti. Straightforward calculations
lead to the following expressions:

�Ti

�t
= − xi�i

d−1	 Ti

mi

�1 − �ii
2�

2
Ti�t�

+ �
j=1,j�i

K
xj

	2
�ij

d−1	 Ti

mi
+

Tj

mj
� ji�1 + �ij�

���� ji�1 + �ij� − 2�Ti + �ij�1 + �ij�Tj� , �4�

where we have introduced the normalized mass ratios
�ij =mi / �mi+mj�. We rewrite this set into a more compact

expression after defining the related �ij =1−�ij:

�Ti

�t
= �

j=1

K

xj

�ij
d−1

	2
	 Ti

mi
+

Tj

mj
�ij�2 − �ij�

���− 2�ij − � ji�ij�Ti + �2�ij − �ij�ij�Tj� . �5�

The next step consists in introducing the quantities Ri
=Ti /T1, which measure the departure from energy equiparti-
tion. Obviously, the K quantities Ri, i=1,… ,K, are equal to
1 when equipartition takes place, and R1 is always equal to 1
by construction. We also rescale the time d�=dt	T1�t� /m1,
thereby considering a time scale proportional to the average
number of collision 1-1 in the system:

��Ri = �
j=1

K

xj

�ij
d−1

	2
	Ri

m1

mi
+ Rj

m1

mj
� ji�2 − �ij�

���− 2�ij − � ji�ij�Ri + �2�ij − �ij�ij�Rj�

− Ri�
j=1

K

xj

�1j
d−1

	2
	1 + Rj

m1

mj
� j1�2 − �1j�

���− 2�1j − � j1�1j� + �2�1j − �1j�1j�Rj� �6�

where one verifies that R1=1 as imposed by construction. In
the following, we are interested in the stationary solutions
for small inelasticity parameters. Therefore, we solve Eq. �6�
by perturbation methods assuming that the quantities �ij are
all small and of the same order of magnitude. The tempera-
ture ratios are written under the form Rj =1+�Rj

1, where � is
a small formal perturbation coefficient. This development is
based on the fact that the zeroth order solution of Eq. �6� is
Rj =1, ∀ j, which corresponds to equilibrium equipartition of
energy. The stationary first order solution of Eq. �6� reads

�
j=1

K

xj

2�ij
d−1

	2
	m1

mi
+

m1

mj
� ji�2�ij�Rj

1 − Ri
1� − �ij�

− �
j=1

K

xj

2�1j
d−1

	2
	1 +

m1

mj
� j1�2�1jRj

1 − �1j� = 0. �7�

In a system composed of two components, straightforward
calculations lead to the relation

2m2m1

�m1 + m2�2R2
1 = −

�11
d−1

�12
d−1	 m1

m1 + m2

x2

	2
�22

+
�22

d−1

�12
d−1	 m2

m1 + m2

x1

	2
�11 −

�m1x1 − m2x2�
�m1 + m2�

�12

�8�

where R1
1=0 by definition. This expression gives the first

order deviation to equipartition, in the limit of small inelas-
ticity. Remarkably, solution �8� is exactly equivalent to the
solution obtained by Garzo and Dufty �3� from the IHS
Boltzmann equation in the low inelasticity limit.
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III. ARBITRARY NUMBER OF COMPONENTS

In order to treat systems composed by a large number of
species, it is helpful to rewrite Eq. �7� into the canonical
form

AiRi
1 + �

j=2,j�i

K

BijRj
1 = Ci �9�

where the coefficients read explicitly

Ai = 2xi

�1i
d−1	m1mi

�m1 + mi�3/2 + �
j=1,j�j

K

2xj

�ij
d−1	mimj

�mi + mj�3/2 ,

Ci = �
j=1

K

xj �1j
d−1	mj

	m1�m1 + mj�
�1j −

�ij
d−1	mj

	mi�mi + mj�
�ij� ,

Bij = − 2xj�ij
d−1

	mimj

�mi + mj�3/2 − �1j
d−1

	m1mj

�m1 + mj�3/2� . �10�

Consequently, the whole dynamical problem is reduced to
the inversion of the matrix M defined by

Mij = Aj�ij + Bij . �11�

Unfortunately, this problem is not trivial in practice when the
system is composed of a large number K of components
�inversion of a K−1 matrix� and leads to analytical but in-
tractable expressions for the Rj. In the following, we prefer
to focus on a particular case which enormously simplifies the
inversion of Eq. �9� and whose solutions Rj have a simple
analytical form; namely, we consider a system where all par-
ticles have the same mass mj =m and the same diameter �ij
=�, but whose inelasticities �ij vary. Remarkably, in that
case, all the nondiagonal terms Bij vanish exactly, Bij =0, so
that the general solution of Eq. �10� reads

Ri
1 = �

j=1

K

xj��1j − �ij� . �12�

This solution is instructive for several reasons. First, it is an
expression for nonequipartition of energy in multicomponent
mixtures. Equation �12� clearly shows that the system be-
haves qualitatively in the same way as in a binary inelastic
mixture, namely, the partial temperatures Ti do not asymp-
totically reach the same value, but they remain proportional
in the long time limit. This behavior justifies the derivation
of granular hydrodynamics for complex mixtures �see �13�
for binary mixtures�. Another nice feature of Eq. �12� comes
from its very simple expression, which allows us to recover
the solution �8� when K=2, and which is easily generalized
when the system is composed of an infinite number of spe-
cies, namely, when there is a continuum of inelasticities in
the system. In that case, instead of the concentrations xi used
in order to characterize the components, we use the concen-
tration density 	�
�, which represents the density of species 
.
The probability normalization reads


 d
 	�
� = 1. �13�

Relation �12� generalizes into

R�
� =
 d
�	�
����r
� − �

�� �14�

where r is the arbitrarily chosen reference species to which
the temperatures are compared, R�
�=T�
� /T�r�.

We verify the validity of �12� by performing two kinds of
computer simulations for the multicomponent mixture. The
latter were performed for particles whose masses and diam-
eters are equal, mi=1 �i=1 in order to compare the results
with �12�. First, we make direct simulation Monte Carlo
�DSMC� simulations of the set of kinetic equations �2�,
namely, we apply the standard DSMC algorithm, where the
probability of collisions of a pair is taken to be proportional
to 	Ti+Tj. In the simulations, we considered a system com-
posed of a large number K=50 of components. Moreover,
each species is composed of the same number of particles,

FIG. 1. Asymptotic temperature ratio, as a function of the in-
elasticity of each species, in a system where �min=0.8 �a� and
�min=0.4 �b�. The solid line corresponds to the theoretical predic-
tions �15�, while the data points correspond to DSMC simulations
of TRMM and IHS.
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Ni=Nj. This implies that the concentrations are equal to xi

= 1
50. The species are discriminated by their inelasticities �ii,

which are all assumed to be different, and we chose the
reference component to be the one with the lowest inelastic-
ity: �11��ii, i�1. This arbitrary choice suggests that the
quantities Ri should be 1 in the long time limit, given the
fact that other components dissipate less energy than the ref-
erence component does. One should note, however, that the
choice for the cross inelasticities �ij can still be arbitrarily
chosen provided they respect the symmetry relation �ij =� ji.
For the sake of clarity, we choose for the cross inelasticities
�ij = ��i+� j� /2. This simplification allows us to characterize
each species i by their sole inelasticity �ii instead of the
vectorial quantity ��1i ,… ,�ii ,… ,�Ni�, but it should be veri-
fied experimentally. It simplifies Eq. �12� into

Rj
1 =

1

K
�
n=1

K
1

2
��1 + �n − � j − �n� =

1

2
��1 − � j� . �15�

In the following simulations, we define a minimum and a
maximum inelasticity in the system, �min and �max, respec-
tively. By definition, we choose �11=�min. Then, we fill uni-
formly the interval ��min ,�max�, i.e., �ii=�min+ �i−1���,
where the quantity �� is defined by ��= ��max−�in� /50. Let
us stress that this uniform distribution in the interval
��min ,�max� is an arbitrary choice, and that more general
compositions can be considered without any analytical nor
computational additional difficulty. In this work, we also per-
form DSMC simulations of the true set of inelastic Boltz-
mann equations for the same mixture, where no approxima-
tion is made to simplify the collision operator, thereby
testing the validity of the TRMM. In Fig. 1, we present re-
sults in the small inelastic limit �min=0.8, which show an
excellent agreement with Eq. �15�, and in the high inelastic-
ity limit �min=0.4, for which only small discrepancies from

the predictions may occur, i.e., deviations do not exceed
15%.

IV. CONCLUSION

In this paper, we have focused on the nonequipartition of
energy in inelastic gases composed of a large number of
species. We have used mean field approximations, in order to
simplify the set of Boltzmann equations, and to focus on an
analytically tractable problem. By doing so, we have defined
the two-rate Maxwell model, which we have solved formally
in the small inelasticity limit, thereby deriving the explicit
values for energy nonequipartition in systems where compo-
nents have the same mass and diameter. These predictions
have been verified by simulations for systems composed of
50 components, that show that the TRMM is a relevant
model, even in very inelastic systems. At this point, it is
important to note that the influence of the shape of the ve-
locity distributions has not been taken into account by the
mean field modeling. This is due to the Maxwell-like kernel
of the collision operators, which leads to a closed set of
equations for the partial temperatures, thereby neglecting the
influence of higher velocity moments �14�. Nonetheless, this
influence is usually weak and has no quantitative effect when
the system is weakly inelastic. That was shown in the small
inelasticity limit, both by the DSMC simulation results and
by analytical comparisons with the exact inelastic Boltzmann
equation. As a consequence, the TRMM is an ideal candidate
in order to apprehend more complex phenomena in granular
mixtures, such as hydrodynamics for a large number of com-
ponents, or the detailed study of systems composed of a con-
tinuum species.
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